

A
Report on

Comparative Analysis of
Message Broker Software

By:

Asrhdeep Singh Syal
Jubeen Shah

Rayan Dasoriya
Sujal

https://github.com/rayandasoriya/Message_Broker_Analysis

Table of Contents
Overview .. 3
Implementation Details .. 4

Apache JMeter .. 4
Apache ActiveMQ .. 4
Apache Kafka ... 6
RabbitMQ ... 8

Gatling .. 9
Apache Kafka ... 12
RabbitMQ ... 13

SonarLint ... 14
Installation .. 14
Analyzing source code with SonarLint ... 14

FindBugs .. 16
Installation .. 16
Reports Browsing ... 16
Configuration .. 17

Results .. 18

Performance Analysis using Apache JMeter ... 18
Throughput ... 18
Latency ... 27

SonarLint ... 28
Apache Kafka SonarLint .. 28
ActiveMQ SonarLint .. 29
Combined Analysis ... 29

FindBugs .. 30
FindBugs ActiveMQ Broker ... 30
FindBugs ActiveMQ Core .. 30

Community Insights ... 31

Industrial Usage .. 31
Popularity in Search ... 32
Community Statistics .. 34

Commits per year .. 34

Challenges .. 37
Conclusion ... 38
References .. 39

https://github.com/rayandasoriya/Message_Broker_Analysis

Overview
This project is a comparative analysis of the message queuing broker tools like Apache
ActiveMQ, Apache Kafka, and RabbitMQ on the basis of performance and error finding tools
like JMeter, Gatling, SonarQube, FindBugs along with some interesting GitHub stats.

A message broker is a module which translates a message from the formal messaging protocol of
the sender to the formal messaging protocol of the receiver. Message brokers are elements in
telecommunication or computer networks where software applications communicate by
exchanging formally-defined messages. The primary purpose of a broker is to take incoming
messages from applications and perform some action on them. Message brokers can decouple
end-points, meet specific non-functional requirements, and facilitate reuse of intermediary
functions. For example, a message broker may be used to manage a workload queue or message
queue for multiple receivers, providing reliable storage, guaranteed message delivery and
perhaps transaction management. The following represent other examples of actions that might
be handled by the broker.

Apache ActiveMQ is an open-source messaging and Integration Patterns server written in Java.
It is fast, supports many Cross-Language Clients and Protocols, comes with easy to use
Enterprise Integration Patterns and many advanced features.

Apache Kafka is an open-source stream-processing software platform written in Scala and Java.
The project aims to provide a unified, high-throughput, low-latency platform for handling real-
time data feeds. The advantage of Kafka's model is that every topic has both queuing and
publish-subscribe model—it can scale processing and is also multi-subscriber—there is no need
to choose one or the other.

RabbitMQ is an open-source message broker software written in Erlang that originally
implemented the Advanced Message Queuing Protocol and has since been extended with a plug-
in architecture to support Streaming Text Oriented Messaging Protocol, Message Queuing
Telemetry Transport, and other protocols.

In the coming section, we have demonstrated about the usage of tools like Apache JMeter,
Gatling, SonarLint, FindBugs to determine the performance measures, i.e. throughput and
latency along with the errors, bugs and the community support of these open source software.

https://github.com/rayandasoriya/Message_Broker_Analysis

Implementation Details

Apache JMeter
The Apache JMeter is an open source Java based software, designed to load test functional
behavior and measure performance. Apache JMeter may be used to test performance and to
simulate a heavy load on a server, group of servers, network or object to test its strength or to
analyze overall performance under different load types. We have used JMeter to find two
parameters: throughput and latency of the software.

Apache ActiveMQ

● Publisher Configuration on JMeter

https://github.com/rayandasoriya/Message_Broker_Analysis

● Subscriber Configuration on JMeter

https://github.com/rayandasoriya/Message_Broker_Analysis

Apache Kafka

● Publisher Configuration on JMeter

● Consumer Configuration on JMeter

https://github.com/rayandasoriya/Message_Broker_Analysis

● Java Request Configuration

https://github.com/rayandasoriya/Message_Broker_Analysis

RabbitMQ

● Thread Group Configuration on JMeter

● Publisher Configuration on JMeter

https://github.com/rayandasoriya/Message_Broker_Analysis

Gatling
Gatling is an open-source load and performance testing framework based on Scala, Akka and
Netty. The software is designed to be used as a load testing tool for analyzing and measuring the
performance of a variety of services, with a focus on web applications. Two years ago, Gatling
officially presented Gatling FrontLine, Gatling's Enterprise Version with additional features.

Reasons for choosing Gatling:

1. Enhanced user experience

2. Fast and quick results for improving the development cycle

3. Works better with REST APIs

4. Anticipates slow response times and crashes

Introduction to Gatling implementation working on hosted computer database and Gatling
recorder.

System: MacBook Pro (2.9 GHz Intel Core i7, 16 GB)

● API deployed at (http://computer-database.gatling.io/computers) hosting a computer
database

● Using Gatling’s recorder GUI: bin/recorder.sh

● To capture CRUD activities.
● Configure the recorder according to the network specifications

https://github.com/rayandasoriya/Message_Broker_Analysis

● If the recording is successfully captured, a simulation file is generated under user-
files/simulations/computerdatabase

● Once the simulation file is successfully created, run Gatling using: bin/gatling.sh

Sample Results:

https://github.com/rayandasoriya/Message_Broker_Analysis

https://github.com/rayandasoriya/Message_Broker_Analysis

The analysis with two servers was the first attempt towards working with build tools,
Scala and IntelliJ. The learning curve was steep working with multiple dependencies of
Gatling, Scala, Java, SBT and Sever Releases.

Apache Kafka

• Versions studied: 2.12-2.0.0, 2.10-0.10

• Dependency Manager: SBT

• IDE: IntelliJ

• Language: Scala

• Using Gatling’s plugin supporting the producer API, jar was build provided to Gatling.
Following is a basic simulation file used to stress test the server.

Simulation configuration file:

However, we were constantly facing the following error but couldn’t get a workaround
for the same. According to our understanding, the Gatling (2.2) was not able to find a

https://github.com/rayandasoriya/Message_Broker_Analysis

class named “io/gatling/commons/util/ClockSingleton” which would’ve been used as a
benchmark the clock timings to measure various parameters of the protocol. Since we
were not able to execute Kafka (2.10-0.10) earlier, we tried implementing the same with
latest Kafka version and couldn’t get through this issue.

RabbitMQ

• Dependency Manager: Gradle

• IDE: IntelliJ

• Language: Erlang

• Gatling version required for the plugin Gatling-2.0.0-M3a.

• Similar issues were faced in implementing, Gatling’s plugin of RabbitMQ server in
addition to the inexperience in Erlang programming language.

https://github.com/rayandasoriya/Message_Broker_Analysis

SonarLint
SonarLint is an IDE extension that helps you detect and fix quality issues as you write code. Like
a spell checker, SonarLint squiggles flaws.

Installation

1. Click on Settings > Plugins

○
2. Click on Browse Repositories button
3. Type in “SonarLint” and click on the install button

4. Restart your IDE if asked for.

Analyzing source code with SonarLint
With SonarLint, you can analyze the code at codebase level, package level, file level or even a
block of code. Select a source folder, package or file or block or code then right click and click
on “Analyze with SonarLint” (Ctrl + Alt + S)

https://github.com/rayandasoriya/Message_Broker_Analysis

This option will analyze the selected code and generates a report. Once the analysis is
complete you would see some results in the SonarLint tab.

You can see the reports for the current file, or complete report by clicking on these tabs in
the SonarLint tab.

Select any item in the report to see the rule and location on the right side as shown below.

https://github.com/rayandasoriya/Message_Broker_Analysis

FindBugs
FindBugs is an open source static code analyzer which detects possible bugs in Java programs.
Potential errors are classified in four ranks:

(i) Scariest

(ii) Scary

(iii) Troubling

(iv) Concern.

This is a hint to the developer about their possible impact or severity. FindBugs operates on Java
bytecode, rather than source code. The software is distributed as a stand-alone GUI application.
There are also plug-ins available for Eclipse, NetBeans, IntelliJ IDEA, Gradle, Hudson, Maven,
Bamboo and Jenkins.

Installation
The steps for installation are:

1. Plugin installation package from the official JetBrains site and extract it to the folder
%INSTALLATION_DIRECTORY%/plugins.

2. Restart your IDE and you’re good to go.
3. Alternatively, you can navigate to Settings -> Plugins and search all repositories for

FindBugs plugin.
4. To make sure that the FindBugs plugin is properly installed, check for the option labeled

“Analyze project code” under Analyze -> FindBugs.

Reports Browsing
In order to launch static analysis in IDEA, click on “Analyze project code”, under Analyze ->
FindBugs, then look for the FindBugs-IDEA panel to inspect the results:

https://github.com/rayandasoriya/Message_Broker_Analysis

You can use the second column of commands on the left side of the screenshot, to group defects
using different factors:

1. Group by a bug category.
2. Group by a class.
3. Group by a package.
4. Group by a bug rank.

It is also possible to export the reports in XML/HTML format, by clicking the “export” button in
the fourth column of commands.

Configuration

The FindBugs plugin preferences pages inside IDEA is pretty self-explanatory:

https://github.com/rayandasoriya/Message_Broker_Analysis

Results

Performance Analysis using Apache JMeter

Throughput
Throughput is the rate of successful message delivery over a communication channel.

Comparison of Number of Samples vs Throughput

1. Apache ActiveMQ

https://github.com/rayandasoriya/Message_Broker_Analysis

2. Apache Kafka

3. RabbitMQ

https://github.com/rayandasoriya/Message_Broker_Analysis

Comparison of Average Broker Throughput

https://github.com/rayandasoriya/Message_Broker_Analysis

Detailed Analysis of Throughput of Apache Kafka

● For 10,000 messages per second

https://github.com/rayandasoriya/Message_Broker_Analysis

● For 100,000 messages per second

https://github.com/rayandasoriya/Message_Broker_Analysis

● For 1,000,000 messages per second

https://github.com/rayandasoriya/Message_Broker_Analysis

● For 10,000,000 messages per second

https://github.com/rayandasoriya/Message_Broker_Analysis

● For 100,000,000 messages per second

https://github.com/rayandasoriya/Message_Broker_Analysis

Detailed Analysis of Throughput for RabbitMQ

https://github.com/rayandasoriya/Message_Broker_Analysis

Latency
Latency is a time interval between the stimulation and response, or, from a more general point of
view, a time delay between the cause and the effect of some physical change in the system being
observed.

https://github.com/rayandasoriya/Message_Broker_Analysis

SonarLint
While running an analysis, SonarLint raises an issue every time a piece of code breaks a coding rule.
The set of coding rules is defined through the associated quality profile for each language in the
project.

Each issue has one of five severities:

1. Blocker: Bug with a high probability to impact the behavior of the application in production.
Eg. memory leak, unclosed JDBC connection. The code MUST be immediately fixed.

2. Critical: Either a bug with a low probability to impact the behavior of the application in
production or an issue which represents a security flaw. Eg. empty catch block, SQL
injection. The code MUST be immediately reviewed.

3. Major: Quality flaw which can highly impact the developer productivity. Eg. uncovered
piece of code, duplicated blocks, unused parameters.

4. Minor: Quality flaw which can slightly impact the developer productivity. Eg. lines should
not be too long, "switch" statements should have at least 3 cases.

5. Info: Neither a bug nor a quality flaw, just a finding.

Apache Kafka SonarLint

File Name

Types of Bug

Critical Major Minor Info Blocker

org.apache.kafka.clients.admin 2 12 2 1 0

org.apache.kafka.clients.consumer 24 44 7 45 1

org.apache.kafka.clients 4 17 6 0 0

org.apache.kafka.clients.producer 21 37 16 1 0

org.apache.kafka.connect 94 205 57 19 1

https://github.com/rayandasoriya/Message_Broker_Analysis

ActiveMQ SonarLint

File Name

Types of Bug

Critical Major Minor Info Blocker

org.apache.activemq.amqp 21 63 68 5 3

org.apache.activemq.broker 295 753 687 51 12

org.apache.activemq.console 51 162 98 6 1

org.apache.activemq.transport.mqtt 9 37 40 0 3

org.apache.activemq.transport.http 15 103 64 1 2

Combined Analysis

https://github.com/rayandasoriya/Message_Broker_Analysis

FindBugs
FindBugs divide defects in many categories:

● Correctness – gathers general bugs, e.g. infinite loops, inappropriate use of equals(), etc
● Bad practice, e.g. exceptions handling, opened streams, Strings comparison, etc
● Performance, e.g. idle objects
● Multithreaded correctness – gathers synchronization inconsistencies and various

problems in a multi-threaded environment
● Internationalization – gathers problems related to encoding and application’s

internationalization
● Malicious code vulnerability – gathers vulnerabilities in code, e.g. code snippets that can

be exploited by potential attackers
● Security – gathers security holes related to specific protocols or SQL injections
● Dodgy – gathers code smells, e.g. useless comparisons, null checks, unused variables, etc

FindBugs ActiveMQ Broker

Classes Bugs Errors Missing Classes

539 175 0 0

FindBugs ActiveMQ Core

Classes Bugs Errors Missing Classes

2113 659 0 0

https://github.com/rayandasoriya/Message_Broker_Analysis

Community Insights

Industrial Usage

● RabbitMQ is the most popular in the industry, despite Kafka having better performance.

● This can be because, Kafka was late to the market, and by then RabbitMQ had
already taken over the market share from ActiveMQ

● This can be because a majority of the companies that were previously
using ActiveMQ found it very complex.

● The switching costs associated to RabbitMQ are very low
● It is simple, flexible, and has several tool integrations available

https://github.com/rayandasoriya/Message_Broker_Analysis

Popularity in Search
● Looking at the google internet search for the topics directly related to RabbitMQ, Kafka,

and ActiveMQ, it can clearly be seen that in the past year, the most popular message
queueing service has been Kafka.

● This fact can be further supported by the fact that Kafka has the highest number of stars

(amongst the three) on GitHub, translating to very high preference amongst developers.

https://github.com/rayandasoriya/Message_Broker_Analysis

● This statistic is important to know, as it can help us with the growth trend towards a
particular message queuing broker, which should be higher for Kafka, given its increased
popularity amongst developers.

● For example, a comparison is made between the industrial usage of the message
queuing broker, as it was in the beginning of the semester and as it can be seen
now.

 RabbitMQ Kafka ActiveMQ

Industrial Usage (Beginning) 765 355 29

Industrial Usage (Now) 784 367 29

Growth 2.484% 3.380% 0.000%

● As hypothesized, the growth in the number of companies using Kafka has 1% more
increase than in RabbitMQ. This has resulted in more tools being developed for the
integration with Kafka.

● Having a look at the country-wise statistics, for each of the message queuing services, it
was surprisingly a monopoly for Kafka, since in a total of 66 countries, the most popular
message queuing broker being searched on google was Kafka.

https://github.com/rayandasoriya/Message_Broker_Analysis

● It was also interesting to know that, even though there were some countries out of
the 66, that did not search for either RabbitMQ or ActiveMQ, — like Albania,
and Estonia respectively, in contrast Kafka was searched by all of the 66
countries.

Community Statistics

Commits per year

● Based on commits per year for each of the message queuing services, it can be seen that

the community for ActiveMQ is becoming less and less active over the years, being the
most active in the year 2006, and the least active being this year (2018), which could be
correlated with the decline in popularity of the broker amongst developers and
organizations alike.

● RabbitMQ’s community seemed to be the most active during the years 2009 through
2016. After which it was swiftly taken over by Kafka.

● It is interesting to know that the number of commits per year for Kafka increased
at an average rate of 61% from 2011 to 2017

● For the same period, RabbitMQ had a growth rate -12%, with ActiveMQ having a
growth rate of -6%.

● These results further concretely help us understand the reason for growing
popularity amongst developers and organizations and their tendency of moving
towards Kafka, thereby resulting in a slightly higher growth rate in adoption.

https://github.com/rayandasoriya/Message_Broker_Analysis

● Talking about other aspects of community, the retention of contributors very low for
RabbitMQ and Kafka where only three and four top 10 contributors respectively still play
an important role in the community. In contrast, Kafka has eight of the top 10
contributors still working on the project.

○ It could mean that the community is really helpful in case of Kafka, and that
developers are willing to work more on Kafka than other Message brokers.

○ Also, the number of contributors for each of the brokers is a clear indicator of
how well received the Kafka community is.

● This could also be a result of the actively accepting pull requests by the community.
Kafka community is making sure to include as many developers as possible to grow the
community.

https://github.com/rayandasoriya/Message_Broker_Analysis

○ The community support is somewhat reflected in other aspects of community
apart from GitHub. For example, relatively speaking, Kafka has much better
support on Stack Overflow and Reddit than RabbitMQ and ActiveMQ.

● ActiveMQ doesn’t even have a dedicated reddit channel, which is just a discussion topic
in the java channel

https://github.com/rayandasoriya/Message_Broker_Analysis

Challenges
● The extension was built on Gatling 2.2 and the current version is 3.0 series. Moreover,

the Apache Kafka server needed for the plugin to build is 2.10-0.10. We were able to
start the latest 2.12 release of Apache Kafka. Same was the case with RabbitMQ

● The version compatibility between SBT, Java, Scala and the producer API was extremely
tedious, and it was quite cumbersome.

https://github.com/rayandasoriya/Message_Broker_Analysis

Conclusion
RabbitMQ is currently the most favored amongst the industry, but there is a shift in affinity
towards Kafka, both from the perspective of developers and the industry adoption. The rate at
which Kafka is growing is much higher than RabbitMQ, which in contrast seems to be slowly
declining its growth rate. ActiveMQ is the least favored from both the developers and industrial
perspective given the low industry adoption and developers retention rate. So, if a new developer
wishes to contribute to a community, we would recommend contributing to the Kafka
community, because of its high rate of activity, retention, support and overall clarity in the
documentation. If, however, a developer wants to start learning about message brokers, Message
Oriented Middleware, and its implementation we personally found ActiveMQ to be a good
starting point and then transitioning towards Kafka. RabbitMQ would require a higher learning
curve if the developer is unfamiliar with Erlang.

According to our understanding, Gatling was not able to find the “ClockSingleton” class in
current release of Kafka server. We have raised the same issue on GitHub repository of the
plugin we were trying to implement but haven’t been able to resolve it yet. Moreover, one
possible way of implementing both the servers could be hosting an API on the servers and then
exposing them using Gatling to test, which we did not implement.

Talking about the performance, Apache Kafka gave the best performance with a very high
throughput and a low latency rate. ActiveMQ is preferred over Kafka when traditional enterprise
messaging is taken into consideration, however, RabbitMQ does a much better job at throughput,
latency and overall community support than ActiveMQ. Kafka, because of its low latency, and
very high throughput, fault-tolerance, and its highly distributed architecture is most useful in
stream processing, event sourcing, commit log and log aggregation, and traditional messaging.
RabbitMQ would be more useful in pub-sub messaging, request-response messaging, and also
act as an underlaying layer for IoT applications. Hence, depending on the specific use-case you
can choose either RabbitMQ or Kafka.

https://github.com/rayandasoriya/Message_Broker_Analysis

References

[1] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. 2007. Youtube traffic
characterization: a view from the edge. In Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement (IMC '07). ACM, New York, NY, USA, 15-28. DOI:
https://doi.org/10.1145/1298306.1298310
[2] “Apache ActiveMQ” [Online]. Available: https://activemq.apache.org [Accessed: 26-Nov-
2018]
[3] “Apache Kafka.” [Online]. Available: https://kafka.apache.org/ [Accessed: 26-Nov-2018]
[4] “Rabbit MQ” [Online]. Available: http://www.rabbitmq.com [Accessed: 26-Nov-2018]
[5] “JMeter” [Online]. Available: https://jmeter.apache.org [Accessed: 26-Nov-2018]
[6] “Gatling” [Online]. Available: https://gatling.io [Accessed: 26-Nov-2018]
[7] “SonarLint” [Online]. Availale: https://www.sonarlint.org [Accessed: 26-Nov-2018]
[8] “FindBugs” [Online]. Available: http://findbugs.sourceforge.net [Accessed: 26-Nov-2018]
[9] “AMQP plugin for RabbitMQ to use with JMeter” [Online]. Available:
https://github.com/jlavallee/JMeter-Rabbit-AMQP [Accessed: 26-Nov-2018]
[10] “Pepper-box Plugin for kafka to use with Jmeter” [Online]. Available:
https://github.com/GSLabDev/pepper-box [Accessed: 26-Nov-2018]
[11] “Kafkameter plugin for kafka to use with Jmeter” [Online]. Available:
https://github.com/BrightTag/kafkameter [Accessed: 26-Nov-2018]
[12] “Kafka Plugin for Gatling” [Online]. Available: https://github.com/mnogu/gatling-kafka
[Accessed: 26-Nov-2018]
[13] “RabbitMQ Plugin for Gatling” [Online]. Available: https://github.com/fhalim/gatling-
rabbitmq [Accessed: 26-Nov-2018]
[14] N. Nannoni, “Message-oriented Middleware for Scalable Data Analytics Architectures.”
KTH, Skolan for informations-och kommunikationsteknik (ICT), 01-Jan-2015 [Online].
Available:
https://www.openaire.eu/search/publication?articleId=od_______260::426cdfd2d497eeac93862a
ef4960f8
[15] “Different takes on messageingh” [Online]. Available: https://jack-
vanlightly.com/blog/2017/12/4/rabbitmq-vs-kafka-part-1-messaging-topologies [Accessed: 26-
Nov-2018]

[16] “When to use” [Online]. Available: https://content.pivotal.io/blog/understanding-when-to-
use-rabbitmq-or-apache-kafka [Accessed: 26-Nov-2018]

