A

Report on

Comparative Analysis of

Message Broker Software

By:
Asrhdeep Singh Syal
Jubeen Shah
Rayan Dasoriya

Sujal

Table of Contents

Overview 3
Implementation Details 4
Apache JMeter 4
APACKE ACHVEMQ ... cniiiiiiiiieiieiteiee ettt ettt ettt et b bt st se et b et ettt et e bt e bt e bt eb e e b e s bt sttt et et et et enneneen 4
APACKE KATKA ...ttt ettt ettt e e e en 6
RADDIEIMIQ ...ttt b ettt b et b e st s ettt b et bbbt b et be e bt s e 8
Gatling 9
APACKE KATKA ...ttt ettt s a et be e et nene 12
RADDIEIMIQ ...ttt bbbt b e bttt bbbt b et b et b et b et ne ettt ee 13
SonarLint 14
INSEALLATION ...ttt ettt ettt et et b bbbt b et ettt et a e st st e bt bbbt be e et e bentene 14
Analyzing source code With SONATLINT........cc.iieririirierierieieietee ettt ettt ettt esbe e e b nnene 14
FindBugs 16
INSEALLATION ..ttt ettt ettt et et b b et bttt a et ea e st bt eb e bbbt be e et e bentent 16
REPOTES BIOWSING ...ttt ettt ettt et b s sttt ettt e st et e st ebeebeebesae st enbenaetententens 16
CONTIGUIALION ...ttt ettt ettt ettt et ebe e bt e bt e a e e bt e bt s et et e b et et et e e e st enee st eseebeebeebesbe st enbeneetententens 17
Results 18
Performance Analysis using Apache JMeter 18
TRIOUZNPUL ..ottt ettt b b sttt ettt e et e st e st e st ebeebeebesae et enbenaeeetentens 18
LLALETICY ..ottt et a e et a e e s a e e a e n e e h e s a e reeneeneae 27
SonarLint 28
Apache Kafka SONATLINT «.....cccoiiiriririiiricer ettt ettt ettt ettt ebe bbbt st esbesaeseetenens 28
ACtIVEMQ SONATLINTvitieiieiieie ettt ettt st et e et et e eseeteeseesseentesseensesseensesseensesseensesseensenneensenns 29
COMDINEA ANALYSIS ... cuveuteuteiteieeiteiiriert ettt ettt ettt ettt et e bt b s b s bt st et e b et et et e st enee st e st ebeebeebesaesbenbenaensententens 29
FindBugs 30
FindBugs ACtiVEMQ BIOKETcc.coiriiiiiiriitiietetetet ettt ettt ettt ettt ettt ebe s sae st be e se et aene 30
FIindBugs ACHVEMQ COTCccueiuiririiriiniertitiienietetet ettt et ettt st ettt et et e e st e st e st ebeebesbesae st enbesaensetennens 30
Community Insights 31
Industrial Usage 31
Popularity in Search 32
Community Statistics 34
COMUIMILS POI YEAT ... veveeeeereetieteesteetesteetesteetesseensesseesesseenseaseenseaseenseaneesseeneenseensesseensesseensesseensesseensesseensesneensenns 34
Challenges 37
Conclusion 38
References 39

https://github.com/rayandasoriya/Message_Broker_Analysis

Overview

This project is a comparative analysis of the message queuing broker tools like Apache
ActiveMQ, Apache Kafka, and RabbitMQ on the basis of performance and error finding tools
like JMeter, Gatling, SonarQube, FindBugs along with some interesting GitHub stats.

A message broker is a module which translates a message from the formal messaging protocol of
the sender to the formal messaging protocol of the receiver. Message brokers are elements in
telecommunication or computer networks where software applications communicate by
exchanging formally-defined messages. The primary purpose of a broker is to take incoming
messages from applications and perform some action on them. Message brokers can decouple
end-points, meet specific non-functional requirements, and facilitate reuse of intermediary
functions. For example, a message broker may be used to manage a workload queue or message
queue for multiple receivers, providing reliable storage, guaranteed message delivery and
perhaps transaction management. The following represent other examples of actions that might
be handled by the broker.

Apache ActiveMQ is an open-source messaging and Integration Patterns server written in Java.
It is fast, supports many Cross-Language Clients and Protocols, comes with easy to use
Enterprise Integration Patterns and many advanced features.

Apache Kafka is an open-source stream-processing software platform written in Scala and Java.
The project aims to provide a unified, high-throughput, low-latency platform for handling real-
time data feeds. The advantage of Kafka's model is that every topic has both queuing and
publish-subscribe model—it can scale processing and is also multi-subscriber —there is no need
to choose one or the other.

RabbitMQ is an open-source message broker software written in Erlang that originally
implemented the Advanced Message Queuing Protocol and has since been extended with a plug-
in architecture to support Streaming Text Oriented Messaging Protocol, Message Queuing
Telemetry Transport, and other protocols.

In the coming section, we have demonstrated about the usage of tools like Apache JMeter,
Gatling, SonarLint, FindBugs to determine the performance measures, i.e. throughput and
latency along with the errors, bugs and the community support of these open source software.

https://github.com/rayandasoriya/Message_Broker_Analysis

Implementation Details

Apache JMeter

The Apache JMeter is an open source Java based software, designed to load test functional
behavior and measure performance. Apache JMeter may be used to test performance and to
simulate a heavy load on a server, group of servers, network or object to test its strength or to
analyze overall performance under different load types. We have used JMeter to find two
parameters: throughput and latency of the software.

Apache ActiveMQ

e Publisher Configuration on JMeter

JMS Publisher

Name: | JMS Publisher

Comments:
Use jndi.properties file

Initial Context Factory = org.apache.activemqg.jndi.ActiveMQInitialContextFactory
Provider URL | tcp://localhost:61616

Connection Factory | ConnectionFactory

Destination | dynamicTopics/MyStaticTopicl Setup @ At startup Each sample Use non-persistent delivery mode?

Use Authorization? User Password
Expiration (ms) 0 Priority (0-9) 4
Reconnect on error codes (regex)

Number of samples to aggregate 10

JMS Properties

Name: Class of value

Message source From file Random File from folder specified below @® Textarea

Message Type ® Text Message Map Message Object Message Bytes Message

https://github.com/rayandasoriya/Message_Broker_Analysis

e Subscriber Configuration on JMeter

JMS Subscriber
Name: | JMS Subscriber

Comments:
Use jndi.properties file

Initial Context Factory | org.apache.activemq.jndi.ActiveMQInitialContextFactory
Provider URL | tcp://localhost:61616
Connection Factory = ConnectionFactory
Destination | dynamicTopics/MyStaticTopicl
Durable Subscription ID
Client ID
JMS Selector
Use Authorization?
User
Password

Number of samples to aggregate =10

¥/ Store Response

Timeout (ms) | 2000
Client ® Use MessageConsumer.receive()

Separator
Reconnect on error codes (regex)

Pause between errors (ms)

Use MessageListener.

https://github.com/rayandasoriya/Message_Broker_Analysis

Setup

At startup @ Each sample

Stop between samples?

Apache Kafka

e Publisher Configuration on JMeter

Apache JMeter (5.0 r1840935)

File Bdit Search Run Options Help
B v STOP. ®

]

Pepper-Box PlainText Config

-Box PlainTex
Commentis:
Configure Plain Text Load Generatior
Message Placeholder Key: GE
Schema Template:
: {{SEQUEN o LI 5
{{uuIn() 3}
{{TIME

e Consumer Configuration on JMeter

Apache JMeter (5.0 r1840935)
File Bdit Search Run Options Help

IsToe

Commentis:
Configure Serialized Load Generation
Message Placeholder Key: ME E
Class Name: c Load Class

Class properties and expression mappings:

I
!
I
I
I

Add Add from Clipboard Remove Clear Up

https://github.com/rayandasoriya/Message_Broker_Analysis

e Java Request Configuration

Apache JMeter (5.0 r1840935)

File Bdit Search Run Options Help

Java Request

Name:

Commentis:

Classname: .gslab.pepper.sampler.PepperBoxKafkaSampler v

Send Parametiers With the Request:

nf lo

Detail Add Add from Clipboard Delete V)]

https://github.com/rayandasoriya/Message_Broker_Analysis

RabbitMQ

e Thread Group Configuration on JMeter

Thread Group
Name: |RabbitMQ Group

Comments:

Action to be taken after a Sampler error
@) Continue Start Next Thread Loop Stop Thread Stop Test Stop Test Now
Thread Properties
Number of Threads (users): |1000
Ramp-Up Period (in seconds): |1
Loop Count: [|Forever |4
| Delay Thread creation until needed

| Scheduler
Scheduler Configuration
Duration (seconds)
Startup delay (seconds)

Start Time |2

016/06/13

End Time |2016/06/13 10

e Publisher Configuration on JMeter

AMQP Publisher
Name: |AMQP Publisher
Comments:
Exchange
Exchange |auditiogs Exchange Type |fanout v Connection
Virtual Host |/
Durable? | Rededare?
Host localhost
Queue Port |5672 [7]ssL?

Queue |logstashqueue
Username |guest

Routing Key Durable? [Rededare?

Password |guest
Message TTL Exdusive Timeout | 1000
Expires Auto Delete?

Number of samples to Aggregate |1
Persistent?
Use Transactions?

Routing Key

Message Type

Reply-To Queue

Correlation Id

ContentType

Message Id

https://github.com/rayandasoriya/Message_Broker_Analysis

Gatling

Gatling is an open-source load and performance testing framework based on Scala, Akka and
Netty. The software is designed to be used as a load testing tool for analyzing and measuring the
performance of a variety of services, with a focus on web applications. Two years ago, Gatling
officially presented Gatling FrontLine, Gatling's Enterprise Version with additional features.

Reasons for choosing Gatling:

1. Enhanced user experience

2. Fast and quick results for improving the development cycle

3. Works better with REST APIs

4. Anticipates slow response times and crashes

Introduction to Gatling implementation working on hosted computer database and Gatling

recorder.

System: MacBook Pro (2.9 GHz Intel Core i7, 16 GB)

API deployed at (http://computer-database.gatling.io/computers) hosting a computer

database

Using Gatling’s recorder GUI:

bin/recorder.sh

Gatling Recorder - Configuration

Self-signed Certificate *

Username

s
£e (atling
ey 4

Network

Listening port*: localhost HTTP/HTTPS | 8000 HTTPS mode:

Outgoing proxy: host: HTTP HTTPS

Simulation Information

Package: default Class Name*
¥ Follow Redirects? (Infer html resources?

(¥ Remove conditional cache headers?

Output

Output folder*: | /Users/pdalpra/Work/Gatling/testing/sbt-test/src/test/scala

Encoding: Unicode (UTF-8)

Filters

Java regular expressions that matches the entire URI

RecordedSimulation

Recorder mode

HTTP Proxy

Password

(¥ Automatic Referers?

Save & check response bodies?

Browse

Strategy | Disabled

Whitelist

ok = Clear

Blacklist

Clear

No static resources

Save preferences Start !

To capture CRUD activities.

Configure the recorder according to the network specifications

https://github.com/rayandasoriya/Message_Broker_Analysis

e If the recording is successfully captured, a simulation file is generated under user-
files/simulations/computerdatabase
e Once the simulation file is successfully created, run Gatling using: bin/gatling.sh

Sample Results:

£:Gatling

Get more features with Gatling FrontLine

<74 basicsimulation

» GLOBAL 2018-10-07 16:04:51 -04:00, duration : 25 seconds
Active Users Global Information
Requests / sec [Indicators } Number of requests
Responses / sec L=
1

@

o

3

3

=

g

&

-

5 \

g

2

£

E

z

Mo MoK

T
800ms <t<

1200 ms

t < 800 ms

p STATISTICS

t> 1200 ms

) Executions

Requests *

OK# KO #

Global Information 13
request_1
request_...direct 1
request_2
request_3
request_4
request_...direct 1
request_5
request_6
request_7
request_8
request_9

request_10

request_...direct 1

%
KO #

0%
0%
0%
0%
(O
0%
0%
0%
0%
0%
0%
0%
0%
0%

T
failed

Req/s #

0.52

0.04
0.04
0.04
0.04
0.04

50th
pct#

120
242
124
236
126
116
121
114

https://github.com/rayandasoriya/Message_Broker_Analysis

Expand all groups | Collapse all groups

® Response Time (ms)

75th
pct#

95th
pct#

99th

pcts Mean ¢
s

Max

126 243 L 244 146

242 242 242 242 242

124 124 124 124 124

236 236 236

126 126 126

116 116 116
121 121 121

114

Active Users along the Simulation — Scenario Name

~ All Users

4
[
v
=)
o 1
2
=
v
<
b
2 o5
-
o
£
=]
z
‘ T T | T T | T | T T | T
16:04:54 16:04:56 16:04:58 16:05:00 16:05:02 16:05:04 16:05:06 16:05:08 16:05:10 16:05:12 16:05:14 16:05:16
Response Time Distribution
20 ok EKO
@9 15
w
@
=
o
U
<
k]
° 10
o
]
c
[
L
[
& s
o T I T I
113 139 165 192 218

Number of responses per second
zoom [L[] — Al KO I OK — All Users

Sunday, Oct 7, 16:04:56
e All: O 1
* KO: 0
* OK: 0
« All Users: 1

o 1

0.5

SI9SMN 2ANDY

Numb

| |
16:04:54 16:04:56 16:04:58 16:05:00 16:05:02 16:05:04 16:05:06 16:05:08 16:05:10 16:05:12 16:05:14 16:05:16

https://github.com/rayandasoriya/Message_Broker_Analysis

The analysis with two servers was the first attempt towards working with build tools,
Scala and IntelliJ. The learning curve was steep working with multiple dependencies of
Gatling, Scala, Java, SBT and Sever Releases.

Apache Kafka
e Versions studied: 2.12-2.0.0, 2.10-0.10
e Dependency Manager: SBT
e [DE: IntelliJ
e Language: Scala

e Using Gatling’s plugin supporting the producer API, jar was build provided to Gatling.
Following is a basic simulation file used to stress test the server.

Simulation configuration file:

@ build.sbt j1 build.properties @ assembly.sbt @ Plugins.sbt

com.github.mnogu.gatling.kafka.test
io.gatling.core.Predef._

org.apache. kafka.clients.producer.ProducerConfig
scala.concurrent.duration._

com.github.mnogu.gatling.kafka.Predef._

KafkaSimulation Simulation {
kafkaConf = kafka

.topic()
.properties(
Map (
ProducerConfig.ACKS_CONFIG —>

ProducerConfig.BOOTSTRAP_SERVERS_CONFIG —>

ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG —>

ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG —>

scn = scenario(
.exec(kafka().send[String] ())

setUp(
scn
.inject(constantUsersPerSec(10) during(1 seconds)))
.protocols(kafkaConf)

However, we were constantly facing the following error but couldn’t get a workaround
for the same. According to our understanding, the Gatling (2.2) was not able to find a

https://github.com/rayandasoriya/Message_Broker_Analysis

class named “io/gatling/commons/util/ClockSingleton” which would’ve been used as a
benchmark the clock timings to measure various parameters of the protocol. Since we

were not able to execute Kafka (2.10-0.10) earlier, we tried implementing the same with

latest Kafka version and couldn’t get through this issue.

1

Simulation com.github.mnogu.gatling.kafka.test.KafkaSimulation started...
Uncaught error from thread [GatlingSystem-akka.actor.default-dispatcher-3] shutting down JVM since 'akka.jvm-exit-on-fatal-error' i

s enabled for ActorSystem[GatlingSystem]

java.lang.NoClassDefFoundError: io/gatling/commons/util/ClockSingleton$

at com.github.mnogu.gatling.kafka.action.

on$$sendRequest$l.apply (KafkaRequestAction.scala:
at com.github.mnogu.gatling.kafka.action.
on$$sendRequest$l.apply (KafkaRequestAction.scala:
at io.gatling.commons.validation.Success.

at com.github.mnogu.gatling.kafka.action
equest (KafkaRequestAction.scala:56)

RabbitMQ

KafkaRequestAction$$anonfuncomgithub$mnogusgatling$kafka$action$KafkaRequestActi
65)
KafkaRequestAction$$anonfuncomgithub$mnogusgatling$kafka$action$KafkaRequestActi
56)

map(Validation.scala:32)

.KafkaRequestAction.com$github$mnogu$gatling$kafkasaction$KafkaRequestAction$$sendR

e Dependency Manager: Gradle

e [DE: IntelliJ

e Language: Erlang

e Gatling version required for the plugin Gatling-2.0.0-M3a.

e Similar issues were faced in implementing, Gatling’s plugin of RabbitMQ server in
addition to the inexperience in Erlang programming language.

https://github.com/rayandasoriya/Message_Broker_Analysis

SonarLint

SonarLint is an IDE extension that helps you detect and fix quality issues as you write code. Like
a spell checker, SonarLint squiggles flaws.

Installation

1. Click on Settings > Plugins

Install JetBrains plugin... Jrowse repositories... Install plugin from disk...

O
2. Click on Browse Repositories button
3. Type in “SonarLint” and click on the install button
INSPECTION
SonarLint

[i] Update

k¥ 658363 downloads

Updated 17-07-2018

4. Restart your IDE if asked for.

Analyzing source code with SonarLint

With SonarLint, you can analyze the code at codebase level, package level, file level or even a
block of code. Select a source folder, package or file or block or code then right click and click
on “Analyze with SonarLint” (Ctrl + Alt + S)

https://github.com/rayandasoriya/Message_Broker_Analysis

service [order-xapi-servi¢ Find U

Find in Path...

by Name... Ctrl+Alt+Shift+I
Add to Favorites :

Show Image Thumbnails Ctrl+Shift+T
fm eforn Ctrl+Alt+L
et Ctrl+ Alt+F6
target
er-xapi-service.iml
xml
Ctrl+Shift+F9
Run 'All Te Ctrl+Shift+F10
D All Te
Run 'All Te vith Coverage
Create 'All Tests'...
Ctrl+Shift+S

Local History

This option will analyze the selected code and generates a report. Once the analysis is
complete you would see some results in the SonarLint tab.

% 6: TODO Y 9: Version Control >-| Terminal SonarlLint

You can see the reports for the current file, or complete report by clicking on these tabs in
the SonarLint tab.

Select any item in the report to see the rule and location on the right side as shown below.

Rule Lo
rackage names should comply with a naming
convention

match the regular

Codesmell @ Minor squid:500120

Sonarlint

https://github.com/rayandasoriya/Message_Broker_Analysis

FindBugs

FindBugs is an open source static code analyzer which detects possible bugs in Java programs.
Potential errors are classified in four ranks:

(1) Scariest
(i1) Scary

(ii1) Troubling
(iv) Concern.

This is a hint to the developer about their possible impact or severity. FindBugs operates on Java
bytecode, rather than source code. The software is distributed as a stand-alone GUI application.
There are also plug-ins available for Eclipse, NetBeans, IntelliJ IDEA, Gradle, Hudson, Maven,
Bamboo and Jenkins.

Installation
The steps for installation are:

1. Plugin installation package from the official JetBrains site and extract it to the folder
9%INSTALLATION_DIRECTORY %/plugins.

2. Restart your IDE and you’re good to go.

3. Alternatively, you can navigate to Settings -> Plugins and search all repositories for
FindBugs plugin.

4. To make sure that the FindBugs plugin is properly installed, check for the option labeled
“Analyze project code” under Analyze -> FindBugs.

Reports Browsing

In order to launch static analysis in IDEA, click on “Analyze project code”, under Analyze ->

FindBugs, then look for the FindBugs-IDEA panel to inspect the results:
4 'Qﬁ > spring-rest (20) [Baeldung master]
4 & Of Concern (20)

4 # Normal confidence (10)
#2 Method ignores exceptional return value (2)
#2 Unused field (7)
#2 Unwritten public or protected field (1)

4 %2 Low confidence (10)
#2 Confusing method names (1)
#2 Method may fail to close stream on exception (2)
#2 Exception is caught when Exception is not thrown (2)
Private method is never called (3)
#2 Field not initialized in constructor but dereferenced without null check (2)

https://github.com/rayandasoriya/Message_Broker_Analysis

You can use the second column of commands on the left side of the screenshot, to group defects

using different factors:

Group by a bug category.
Group by a class.
Group by a package.

A W =

Group by a bug rank.

It is also possible to export the reports in XML/HTML format, by clicking the “export” button in

the fourth column of commands.

Configuration

The FindBugs plugin preferences pages inside IDEA is pretty self-explanatory:

FindBugs-IDEA =) For current project

General REPOFtl Filter| Detector, Annotatel Share|

Analysis effort Default n
Minimum rank 20 - Of Concern n
Minimum confidence Medium n

Reported (visible) bug categories

Bad practice (BAD_PRACTICE)

Malicious code vulnerability (MALICIOUS_CODE)
Correctness (CORRECTNESS)

Performance (PERFORMANCE)

Security (SECURITY)

Dodgy code (STYLE)

Experimental (EXPERIMENTAL)

Multithreaded correctness (IMT_CORRECTNESS)

Internationalization (| 12N)

m | Cancel | | sopy | | Help |

https://github.com/rayandasoriya/Message_Broker_Analysis

Results

Performance Analysis using Apache JMeter

Throughput

Throughput is the rate of successful message delivery over a communication channel.

Comparison of Number of Samples vs Throughput

1. Apache ActiveMQ

JMeter Results for ActiveMQ

100,000

Number of Producers

1,000,000 '7 4'

20k 25k 30k 35k 40k

Messages per Second

https://github.com/rayandasoriya/Message_Broker_Analysis

2. Apache Kafka

JMeter Results for Kafka

10,000)I-‘
4
[J4
o
3
kel
2
& 100,000
o
—
[
Q
1S
3
z
0 0.2M 0.4M 0.6M 0.8M ™ 1.2M 1.4M 1.6M
Messages per Second
3. RabbitMQ
10'000 '
o
[
v
3
©
2
= 100,000
‘*5 4
S
[V
Qo
E
=
=
1‘000'000 '—_—I
50k 100k 150k 200k 250k

Messages per Second

https://github.com/rayandasoriya/Message_Broker_Analysis

Comparison of Average Broker Throughput

Average Broker Throughput
100000

75000

50000

(msgs/sec)

25000

Sender Throughput Receiver Throughput
M ActiveMQ I RabbitMQ " Kafka

https://github.com/rayandasoriya/Message_Broker_Analysis

Detailed Analysis of Throughput of Apache Kafka

e For 10,000 messages per second

W 1000 ¥ 10000 I 100000 W 1000000 [10000000 W 1000 % 10000 % 100000 W 1000000 M 10000000
11000 8
7.12
8250 6
5500 4
2750 2 —
.l
0 0
Records/sec Ava Latency (ms)

[1000 | 10000 £% 100000 [M 1000000 [10000000

1050

700

Max Latency (ms)

https://github.com/rayandasoriya/Message_Broker_Analysis

e For 100,000 messages per second

W 1000 ™ 10000 ¥ 100000 MM 1000000 M 10000000 W 1000 ™ 10000 ™ 100000 M 1000000 M 10000000

110000 - 4

82500

55000

27500

Records/sec Avg Latency (ms)

9 1000 W 10000 W 100000 [1000000 [10000000

152

150.5

149

147.5

146

Max Latency (ms)

https://github.com/rayandasoriya/Message_Broker_Analysis

e For 1,000,000 messages per second

™ 1000 710000 7 100000 WM 1000000 M 10000000 W 1000 ™9 10000 % 100000 @ 1000000 M 10000000

1000000

750000

500000

250000

Records/sec Avg Latency (ms)

B 1000 ™ 10000 M 100000 [1000000 M 10000000

158

156

154

152

150 .
Max Latency (ms)

https://github.com/rayandasoriya/Message_Broker_Analysis

e For 10,000,000 messages per second

B 1000 M 10000 ™ 100000 M 1000000 M 10000000 M 1000 N 10000 ™ 100000 M 1000000 M 10000000
100000000 ™ 1000000000 M 100000000 ' 1000000000

i

Records/sec Ava Latency (ms)

™ 1000 M 10000 100000 W 1000000 W 10000000
W 100000000 H 1000000000

Max Latency (ms)

180

170

160
150 i

140

https://github.com/rayandasoriya/Message_Broker_Analysis

e For 100,000,000 messages per second

M 1000 1 10000 ! 100000 [1000000 [10000000 M 1000 | 10000 1 100000 @M 1000000 [10000000
M 100000000 ™ 1000000000 W 100000000 ™ 1000000000

2000000

1500000

1000000

500000

Records/sec Avg Latency (ms)

W 1000 | 10000 /% 100000 [1000000 [10000000
M 100000000 ™ 1000000000

170

162.5

1475

Max Latency (ms)

https://github.com/rayandasoriya/Message_Broker_Analysis

Detailed Analysis of Throughput for RabbitMQ

message-sizes-and-producers
300000

250000
200000

rate (msg/s) 150000

100000

minMsgSize = 0
50000 minMsgSize = 1000

Il minMsgSize = 10000

Il minMsgSize = 100000
0

1 2 3 4 5 6 7
producers

8 9

Message rates last hour ?

300k/s
200k/s
100k/s
0k/s LT\
09:00 09:10 09:20 09:30 09:40 09:50

https://github.com/rayandasoriya/Message_Broker_Analysis

10

Latency

Latency is a time interval between the stimulation and response, or, from a more general point of
view, a time delay between the cause and the effect of some physical change in the system being
observed.

Average Broker Latency
18000

13500

9000

Mean Latency (ms)

4500

0 200000 400000 600000 800000 1000000

Total Messages

ActiveMQ RabbitMQ Kafka

https://github.com/rayandasoriya/Message_Broker_Analysis

SonarLint

While running an analysis, SonarLint raises an issue every time a piece of code breaks a coding rule.
The set of coding rules is defined through the associated quality profile for each language in the
project.

Each issue has one of five severities:

1. Blocker: Bug with a high probability to impact the behavior of the application in production.
Eg. memory leak, unclosed JDBC connection. The code MUST be immediately fixed.

2. Ciritical: Either a bug with a low probability to impact the behavior of the application in
production or an issue which represents a security flaw. Eg. empty catch block, SQL
injection. The code MUST be immediately reviewed.

3. Major: Quality flaw which can highly impact the developer productivity. Eg. uncovered
piece of code, duplicated blocks, unused parameters.

4. Minor: Quality flaw which can slightly impact the developer productivity. Eg. lines should
not be too long, "switch" statements should have at least 3 cases.

5. Info: Neither a bug nor a quality flaw, just a finding.

Apache Kafka SonarLint
Types of Bug
File Name
Critical | Major | Minor Info Blocker

org.apache kafka.clients.admin 2 12 2 1 0
org.apache kafka.clients.consumer 24 44 7 45 1
org.apache kafka.clients 4 17 6 0 0
org.apache kafka.clients.producer 21 37 16 1 0
org.apache kafka.connect 94 205 57 19 1

https://github.com/rayandasoriya/Message_Broker_Analysis

ActiveMQ SonarLint

org.apache.activemq.amqp 21 63 68 5 3
org.apache.activemq.broker 295 753 687 51 12
org.apache.activemq.console 51 162 98 6 1
org.apache.activemq.transport.mqtt 9 37 40 0 3
org.apache.activemq.transport.http 15 103 64 1 2

Combined Analysis

M Critical 1 Major I Minor M Info M Blocker

1200 ¥

ActiveMQ

Kafka

https://github.com/rayandasoriya/Message_Broker_Analysis

FindBugs

FindBugs divide defects in many categories:

Correctness — gathers general bugs, e.g. infinite loops, inappropriate use of equals(), etc
Bad practice, e.g. exceptions handling, opened streams, Strings comparison, etc

Performance, e.g. idle objects

Multithreaded correctness — gathers synchronization inconsistencies and various
problems in a multi-threaded environment

Internationalization — gathers problems related to encoding and application’s
internationalization

Malicious code vulnerability — gathers vulnerabilities in code, e.g. code snippets that can
be exploited by potential attackers

Security — gathers security holes related to specific protocols or SQL injections

Dodgy — gathers code smells, e.g. useless comparisons, null checks, unused variables, etc

FindBugs ActiveMQ Broker

Classes Bugs Errors Missing Classes

539 175 0 0

FindBugs ActiveMQ Core

Classes Bugs Errors Missing Classes

2113 659 0 0

https://github.com/rayandasoriya/Message_Broker_Analysis

Community Insights

Industrial Usage

I ActiveMQ I RabbitMq I Kafka

800

D
o
o

Number of companies using the MQ service
n N
o o
o o

Industrial Usage

e RabbitMQ is the most popular in the industry, despite Kafka having better performance.
e This can be because, Kafka was late to the market, and by then RabbitMQ had
already taken over the market share from ActiveMQ
e This can be because a majority of the companies that were previously
using ActiveMQ found it very complex.
e The switching costs associated to RabbitMQ are very low
e [t is simple, flexible, and has several tool integrations available

https://github.com/rayandasoriya/Message_Broker_Analysis

Popularity in Search

e Looking at the google internet search for the topics directly related to RabbitMQ, Kafka,
and ActiveMQ, it can clearly be seen that in the past year, the most popular message
queueing service has been Kafka.

O ActiveMQ <> RabbitMQ O Kafka

. g me%%%ﬁ@ﬁpw

80
70
60
50
40
30
20
10

0

e This fact can be further supported by the fact that Kafka has the highest number of stars
(amongst the three) on GitHub, translating to very high preference amongst developers.

B ActiveMQ [RabbitMQ [Kafka

11000

8250

5500

2750

Stars

https://github.com/rayandasoriya/Message_Broker_Analysis

e This statistic is important to know, as it can help us with the growth trend towards a
particular message queuing broker, which should be higher for Kafka, given its increased
popularity amongst developers.

e For example, a comparison is made between the industrial usage of the message
queuing broker, as it was in the beginning of the semester and as it can be seen

now.
RabbitMQ Kafka ActiveMQ
Industrial Usage (Beginning) 765 355 29
Industrial Usage (Now) 784 367 29
Growth 2.484% 3.380% 0.000%

e As hypothesized, the growth in the number of companies using Kafka has 1% more
increase than in RabbitMQ. This has resulted in more tools being developed for the
integration with Kafka.

ActiveMQ RabbitMQ Kafka

0.04
908 3.38%
0.02 2.484%
0.01
0%
0
Growth

e Having a look at the country-wise statistics, for each of the message queuing services, it
was surprisingly a monopoly for Kafka, since in a total of 66 countries, the most popular
message queuing broker being searched on google was Kafka.

https://github.com/rayandasoriya/Message_Broker_Analysis

e [t was also interesting to know that, even though there were some countries out of
the 66, that did not search for either RabbitMQ or ActiveMQ, — like Albania,
and Estonia respectively, in contrast Kafka was searched by all of the 66
countries.

Community Statistics

Commits per year
ActiveMQ RabbitMQ Kafka

4000

3000

2000

1000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

e Based on commits per year for each of the message queuing services, it can be seen that
the community for ActiveMQ is becoming less and less active over the years, being the
most active in the year 2006, and the least active being this year (2018), which could be
correlated with the decline in popularity of the broker amongst developers and
organizations alike.

e RabbitMQ’s community seemed to be the most active during the years 2009 through
2016. After which it was swiftly taken over by Kafka.

e [t is interesting to know that the number of commits per year for Kafka increased
at an average rate of 6/% from 2011 to 2017

e For the same period, RabbitMQ had a growth rate -/2%, with ActiveMQ having a
growth rate of -6%.

e These results further concretely help us understand the reason for growing
popularity amongst developers and organizations and their tendency of moving
towards Kafka, thereby resulting in a slightly higher growth rate in adoption.

https://github.com/rayandasoriya/Message_Broker_Analysis

e Talking about other aspects of community, the retention of contributors very low for
RabbitMQ and Kafka where only three and four top 10 contributors respectively still play
an important role in the community. In contrast, Kafka has eight of the top 10
contributors still working on the project.

o It could mean that the community is really helpful in case of Kafka, and that
developers are willing to work more on Kafka than other Message brokers.

o Also, the number of contributors for each of the brokers is a clear indicator of
how well received the Kafka community is.

ActiveMQ RabbitMQ Kafka
500
473
375
250
125
71 74
0

Contributors

e This could also be a result of the actively accepting pull requests by the community.
Kafka community is making sure to include as many developers as possible to grow the
community.

https://github.com/rayandasoriya/Message_Broker_Analysis

M ActiveMQ I RabbitMQ [Kafka

12000

9000

6000

3000

Reddit Subscribers StackOverflow Questions

o The community support is somewhat reflected in other aspects of community
apart from GitHub. For example, relatively speaking, Kafka has much better
support on Stack Overflow and Reddit than RabbitMQ and ActiveMQ.

e ActiveMQ doesn’t even have a dedicated reddit channel, which is just a discussion topic
in the java channel

https://github.com/rayandasoriya/Message_Broker_Analysis

Challenges

e The extension was built on Gatling 2.2 and the current version is 3.0 series. Moreover,
the Apache Kafka server needed for the plugin to build is 2.10-0.10. We were able to
start the latest 2.12 release of Apache Kafka. Same was the case with RabbitMQ

e The version compatibility between SBT, Java, Scala and the producer API was extremely
tedious, and it was quite cumbersome.

https://github.com/rayandasoriya/Message_Broker_Analysis

Conclusion

RabbitMQ is currently the most favored amongst the industry, but there is a shift in affinity
towards Kafka, both from the perspective of developers and the industry adoption. The rate at
which Kafka is growing is much higher than RabbitMQ, which in contrast seems to be slowly
declining its growth rate. ActiveMQ is the least favored from both the developers and industrial
perspective given the low industry adoption and developers retention rate. So, if a new developer
wishes to contribute to a community, we would recommend contributing to the Kafka
community, because of its high rate of activity, retention, support and overall clarity in the
documentation. If, however, a developer wants to start learning about message brokers, Message
Oriented Middleware, and its implementation we personally found ActiveMQ to be a good
starting point and then transitioning towards Kafka. RabbitMQ would require a higher learning
curve if the developer is unfamiliar with Erlang.

According to our understanding, Gatling was not able to find the “ClockSingleton” class in
current release of Kafka server. We have raised the same issue on GitHub repository of the
plugin we were trying to implement but haven’t been able to resolve it yet. Moreover, one
possible way of implementing both the servers could be hosting an API on the servers and then
exposing them using Gatling to test, which we did not implement.

Talking about the performance, Apache Kafka gave the best performance with a very high
throughput and a low latency rate. ActiveMQ is preferred over Kafka when traditional enterprise
messaging is taken into consideration, however, RabbitMQ does a much better job at throughput,
latency and overall community support than ActiveMQ. Kafka, because of its low latency, and
very high throughput, fault-tolerance, and its highly distributed architecture is most useful in
stream processing, event sourcing, commit log and log aggregation, and traditional messaging.
RabbitMQ would be more useful in pub-sub messaging, request-response messaging, and also
act as an underlaying layer for IoT applications. Hence, depending on the specific use-case you
can choose either RabbitMQ or Kafka.

https://github.com/rayandasoriya/Message_Broker_Analysis

References

[1] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. 2007. Youtube traffic
characterization: a view from the edge. In Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement (IMC '07). ACM, New York, NY, USA, 15-28. DOI:
https://doi.org/10.1145/1298306.1298310

[2] “Apache ActiveMQ” [Online]. Available: https://activemq.apache.org [Accessed: 26-Nov-
2018]

[3] “Apache Kafka.” [Online]. Available: https://kafka.apache.org/ [Accessed: 26-Nov-2018]
[4] “Rabbit MQ” [Online]. Available: http://www rabbitmq.com [Accessed: 26-Nov-2018]

[5] “JMeter” [Online]. Available: https://jmeter.apache.org [Accessed: 26-Nov-2018]

[6] “Gatling” [Online]. Available: https://gatling.io [Accessed: 26-Nov-2018]

[7] “SonarLint” [Online]. Availale: https://www .sonarlint.org [Accessed: 26-Nov-2018]

[8] “FindBugs” [Online]. Available: http://findbugs.sourceforge.net [Accessed: 26-Nov-2018]
[9] “AMQP plugin for RabbitMQ to use with JMeter” [Online]. Available:
https://github.com/jlavallee/JMeter-Rabbit-AMQP [Accessed: 26-Nov-2018]

[10] “Pepper-box Plugin for kafka to use with Jmeter” [Online]. Available:
https://github.com/GSLabDev/pepper-box [Accessed: 26-Nov-2018]

[11] “Kafkameter plugin for kafka to use with Jmeter” [Online]. Available:
https://github.com/BrightTag/kafkameter [Accessed: 26-Nov-2018]

[12] “Kafka Plugin for Gatling” [Online]. Available: https://github.com/mnogu/gatling-kafka
[Accessed: 26-Nov-2018]

[13] “RabbitMQ Plugin for Gatling” [Online]. Available: https://github.com/fhalim/gatling-
rabbitmq [Accessed: 26-Nov-2018]

[14] N. Nannoni, “Message-oriented Middleware for Scalable Data Analytics Architectures.”
KTH, Skolan for informations-och kommunikationsteknik (ICT), 01-Jan-2015 [Online].
Available:

https://www .openaire.eu/search/publication?articleld=od 260::426cdfd2d497eeac93862a
ef4960f8

[15] “Different takes on messageingh” [Online]. Available: https://jack-
vanlightly.com/blog/2017/12/4/rabbitmq-vs-kafka-part-1-messaging-topologies [Accessed: 26-
Nov-2018]

[16] “When to use” [Online]. Available: https://content.pivotal.io/blog/understanding-when-to-
use-rabbitmg-or-apache-kafka [Accessed: 26-Nov-2018]

https://github.com/rayandasoriya/Message_Broker_Analysis

